Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Cave, Michael Ji, Min |
| Copyright Year | 2017 |
| Abstract | Today, there are 3 primary methods Solar Turbines, Inc. uses for manufacturing shrouded centrifugal impellers for the Oil and Gas industry. Impellers can be made by an investment casting process, single piece integrally-machined using point milling, or fabricated using a flank milled, open faced impeller and brazing a shroud in place. Investment cast impellers give the aero designer the greatest flexibility in the design, since the designer doesn’t need to be concerned about tool access or other manufacturing constraints. It is common to use this process for any impeller. Single piece integrally-machined impellers are relatively straightforward for high flow coefficient impellers, as the wide flow-path provides plenty of room for tool access. For lower flow coefficients, brazed shrouded impellers can be made very precisely, but at a substantially higher cost than the other methods. Each of these manufacturing methods also has a cost and aerodynamic performance associated with them. With the advent of high-speed machining and better cutting tools, integrally-machined impellers can offer an alternative manufacturing process over cast or fabricated impellers. However, determining the ability to integrally-machine an impeller historically is done late or even after the detailed design process. This can lead to costly redesigns to make sure the impeller can be machined, with flow-path and blade adjustments done after the aerodynamic design. Sometimes these adjustments are unsuccessful and the manufacturing process is abandoned. In this paper, 2 medium flow coefficient impellers are redesigned. These impellers are used in pipeline applications for the transmission of natural gas. The original designs were cast. By incorporating highly customized commercial software written exclusively for defining tool paths of integrally-machined shrouded impellers into the aerodynamic design process, new impeller geometry was defined that was able to be integrally-machined, while meeting or exceeding existing impeller performance and improved design cycle time. This paper will discuss how the machining software was used concurrently with CFD and FEA analysis during the design process. Test results from rig tests will be presented, showing measured results from both the original and redesigned stages. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791850800 |
| DOI | 10.1115/GT2017-64724 |
| Volume Number | Volume 2C: Turbomachinery |
| Conference Proceedings | ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2017-06-26 |
| Publisher Place | Charlotte, North Carolina, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cutting tools Cycles Blades Computational fluid dynamics Computer software Pipelines Machining Brazing Petroleum industry Flow (dynamics) Machinery Design Geometry Impellers Investment casting (process) Investment castings Milling Solar energy Manufacturing Finite element analysis Natural gas Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|