Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Klenke, Timo Presti, Federico Lo Lackhove, Kilian Mare, Francesca Di Sadiki, Amsini Janicka, Johannes |
| Copyright Year | 2017 |
| Abstract | Due to the reduction of fuel consumption and new global emission limits, especially for the pollutant emissions of NOx, improvements to lean combustion technologies in aeroengine combustors are unavoidable. Near to the lean limits, combustion tends to be unstable. A geometry related coupling between unsteady heat release and acoustic perturbations leads to thermoacoustic instabilities, which show an undesirable impact on pressure, velocity and heat release in the combustor. Such instabilities occur when the unsteady heat release fluctuations are in phase with the acoustic pressure fluctuations. The aim of this study is to find an industrially applicable, three-dimensional numerical model for the prediction of combustion noise, which can also provide insight in thermoacoustic instabilities and acoustic effects in a responsive environment in enclosed, technical combustion systems. The turbulent reacting flow in a realistic gas turbine combustor has been computed by means of Large Eddy Simulation coupled to a tabulated chemistry approach based on the Flamelet Generated Manifold ansatz. The reactive LES provides very well suited method to study the impact of unsteady heat release as a major source of acoustic noise in combustion. For the simultaneous treatment of the reacting flow and its acoustic features, a Computational Aero Acoustics (CAA) solver has been coupled with the LES solver following a hybrid approach. In this work the acoustic wave propagation is calculated by the Linearized Euler Equations (LEE). The interface between both codes is optimized for the realisation of an acoustic feedback loop in order to obtain a suitable representation of acoustically self-excited oscillations. To demonstrate the prediction capability of the hybrid LES/CAA approach, geometry-dependent thermoacoustic instabilities in a generic half-dump combustor, for which experimental data are available, are investigated. The numerical results are compared to measured pressure fluctuations under both thermoacoustically stable and unstable conditions. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791850848 |
| DOI | 10.1115/GT2017-63271 |
| Volume Number | Volume 4A: Combustion, Fuels and Emissions |
| Conference Proceedings | ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2017-06-26 |
| Publisher Place | Charlotte, North Carolina, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Oscillations Fuel consumption Acoustics Combustion Sound pressure Noise (sound) Pollution Gas turbines Large eddy simulation Wave propagation Feedback Combustion systems Flamelet generated manifold Turbulence Computer simulation Flow (dynamics) Pressure Emissions Geometry Heat Ansätze (mathematics) Chemistry Fluctuations (physics) Nitrogen oxides Combustion chambers Combustion technologies |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|