Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Giuliani, Fabrice Reiss, Hans Stuetz, Markus Moosbrugger, Vanessa Silbergasser, Alexander |
| Copyright Year | 2016 |
| Abstract | The new energy mix places greater demands on power gas turbine operation; precision combustion monitoring, therefore has become a major issue. Unforeseen events such as combustion instabilities can occur and represent a danger to the integrity of the hot parts and also lead to a limitation of the output power. This is usually accompanied by an increase in maintenance costs. The enlarged off-design operating envelope of gas turbines to adapt to a fast-changing grid has made this issue even more acute, necessitating an expansion of the operating envelope into areas that were — for many engines — not foreseen in the original combustor design process. A good understanding of what happens within the gas turbine combustor is crucial. Complex and costly full-field measurements such as laboratory optical instrumentation in precision combustion diagnostics are not suitable for permanent fleet deployment. For practical and financial reasons, the monitoring should ideally be achieved with a limited amount of discrete sensors. If installed and interpreted correctly, fast response measurement chains could lead to a better gas turbine combustion management, possibly yielding considerable savings in terms of operating and maintenance costs. The firm Meggitt Sensing System (MSS), assisted by Combustion Bay One (CBOne), initiated an applied research programme dedicated to this topic — with MSS providing the instrumentation and CBOne providing the facility and test conditions. The objective was to investigate realistic combustion phenomena in a precisely controlled and reproducible way and to document the individual readings of the heat-resistant fast pressure transducers mounted on the combustor casing, as well as the accelerometers mounted on the outer surface of the machine. Particular attention was paid to the correlation between these two types of sensor readings. This paper reports on the monitoring of the flame using piezoelectric dynamic pressure sensors and accelerometers in a number of different situations that are relevant to the safe and efficient operation of gas turbines. Discussed are single events such as flame ignition, lean blow-out and flash-back, as well as longer test sequences observing the effect of warming-up or the presence of flame instability. The measurement chains and processing techniques are discussed in detail. The atmospheric test rig used for this purpose and the different testing configurations required for each of these situations are also illustrated in detail. The results and recommendations for their implementation in an industrial context conclude this paper. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791849828 |
| DOI | 10.1115/GT2016-56166 |
| Volume Number | Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy |
| Conference Proceedings | ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2016-06-13 |
| Publisher Place | Seoul, South Korea |
| Access Restriction | Subscribed |
| Subject Keyword | Accelerometers Pressure sensors Chain Ignition Instrumentation Combustion Maintenance Machinery Engines Design Flames Heat Gas turbines Monitoring systems Sensors Combustion chambers Pressure transducers Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|