Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Holzinger, F. Wartzek, F. Jüngst, M. Schiffer, H. -P Leichtfuß, S. |
| Copyright Year | 2015 |
| Abstract | This paper investigates the vibrations that occurred on the blisk rotor of a 1.5-stage transonic research compressor designed for aerodynamic performance validation and tested in various configurations at Technische Universität Darmstadt. During the experimental test campaign self-excited blade vibrations were found near the aerodynamic stability limit of the compressor. The vibration was identified as flutter of the first torsion mode and occurred at design speed as well as in the part-speed region. Numerical investigations of the flutter event at design speed confirmed negative aerodynamic damping for the first torsion mode, but showed a strong dependency of aerodynamic damping on blade tip clearance. In order to experimentally validate the relation between blade tip clearance and aerodynamic damping, the compressor tests were repeated with enlarged blade tip clearance for which stability of the torsion mode was predicted. During this second experimental campaign, strong vibrations of a different mode limited compressor operation. An investigation of this second type of vibration found rotating instabilities to be the source of the vibration. The rotating instabilities first occur as an aerodynamic phenomenon and then develop into self-excited vibration of critical amplitude. In a third experimental campaign, the same compressor was tested with reference blade tip clearance and a non-axisymmetric casing treatment. Performance evaluation of this configuration repeatedly showed a significant gain in operating range and pressure ratio. The gain in operating range means that the casing treatment successfully suppresses the previously encountered flutter onset. The aeroelastic potential of the non-axisymmetric casing treatment is validated by means of the unsteady compressor data. By giving a description of all of above configurations and the corresponding vibratory behavior, this paper contains a comprehensive summary of the different types of blade vibration encountered with a single transonic compressor rotor. By investigating the mechanisms behind the vibrations, this paper contributes to the understanding of flow induced blade vibration. It also gives evidence to the dominant role of the tip clearance vortex in the fluid-structure-interaction of tip critical transonic compressors. The aeroelastic evaluation of the non-axisymmetric casing treatment is beneficial for the design of next generation casing treatments for vibration control. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791856772 |
| DOI | 10.1115/GT2015-43628 |
| Volume Number | Volume 7B: Structures and Dynamics |
| Conference Proceedings | ASME Turbo Expo 2015: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2015-06-15 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Damping Performance evaluation Vibration Stability Blades Rotors Clearances (engineering) Compressors Fluid structure interaction Flow (dynamics) Pressure Design Flutter (aerodynamics) Vortices Vibration control Torsion |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|