Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Costa, Alessio Vacchieri, Erica Barbareschi, Emma Guarnone, Paola Bonadei, Alessandra Calcagno, Claudia |
| Copyright Year | 2013 |
| Abstract | The hot gas path components of gas turbines have to withstand to severe conditions in terms of high temperature oxidation, hot corrosion and creep-fatigue phenomena. The evaluation of components residual life is an important matter for gas turbines producers and the estimation of service temperatures is a key tool for this evaluation. The most diffused methods to estimate service temperatures of gas turbines blades and vanes in Ni based superalloys are related to the microstructural evolution of the dispersed intermetallic phase γ′, Ni3Al. The aim of this work has been the determination of a tool to estimate service temperature on the basis of the microstructural evolutions of a NiCoCrAlY+Re coating. In order to obtain a deep characterisation of the coating after exposure at different durations and temperatures, an extensive experimental test program has been planned. Samples of Ni based superalloys, covered by the investigated coating, have been aged in chamber furnaces in the temperature range 700°C – 1000°C with durations up to 20000 hours. The microstructure of this coating is characterised by β phase, NiAl, which is the Al reservoir, embedded in the matrix, that is constituted by γ′ phase at low temperature and by γ phase over 900°C. Moreover, electron back scattered diffraction (EBSD) and X-ray diffraction (XRD) measurements on samples have revealed three classes of secondary phases: the first one has been identified as σ-Cr2Re3, the second one as Cr carbide-Cr23C6 and the third one as α-Cr. σ phase is very abundant at the lower temperatures while it disappears after long exposures at temperatures higher than 900°C. The σ phase composition is different at different temperatures and the Re content in particular increases with the temperature. Starting from the σ phase composition determined at different temperatures, a tool has been constructed that relates the service temperature to the Re content in the same phase. The new tool has been applied to the analyses of different components. The results of the new method have been compared to those ones obtained with the method based on γ′ features, developed in the past through huge experimental campaigns. The agreement between the two methods is generally good, they can be used in a complementary way due to the fact that the γ′ one seems to be more suitable for high temperature ranges (T>900°C) where it gives a reliable estimation, while the sigma method is more suitable in the temperature range 700°C – 900°C. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855195 |
| DOI | 10.1115/GT2013-95675 |
| Volume Number | Volume 5A: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Marine; Microturbines, Turbochargers, and Small Turbomachines |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Blades Creep Electron backscatter diffraction Intermetallic compounds X-ray diffraction Fatigue High temperature Coatings Superalloys Gas turbines Diffraction Corrosion Furnaces Reservoirs Oxidation Coating processes Electrons Low temperature |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|