Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Wolfrum, Nina Brignole, Giovanni Engel, Karl |
| Copyright Year | 2013 |
| Abstract | A numerical model has been developed to reproduce the effects of complex casing treatments (CT) in steady RANS simulations of multistage compressors. While some CTs, such as circumferential grooves, can be described by a rotation surface and can thus easily be included in conventional steady simulations, the CFD analysis of other casing treatments like axial slot or recessed vanes, currently requires a time-resolving analysis of the interaction between such structures and rotating parts. At present unsteady simulations are still too time consuming to be used in the early phase of a compressor design. In the presented study a numerical model was developed for casing treatment applications, to introduce the unsteady effects caused by such casing treatments into steady CFD-simulations. With the help of the model, non-axisymmetric elements can be eliminated from the geometry allowing a steady simulation to be used. The flow acceleration and redirection caused by these geometrical elements is replaced with adequate source terms introduced into the three-dimensional Navier-Stokes equations. These source terms, derived from a consecutive time- and circumferential averaging of the three-dimensional unsteady Reynolds-averaged Navier-Stokes-equations, arise from the momentum and energy equations. Using these additional terms, the CT-model simulates both the pressure forces that the walls of the real casing treatment exert on the flow, and the effects of the mean blockage induced by the omitted geometry. Furthermore, the deterministic stresses, caused by a circumferentially inhomogeneous flow within the CT-structure, are modeled. The source terms consist of geometrical data that can be derived directly from the real geometry of the casing treatment as well as physical quantities of the time-averaged flow in the real casing treatment. The latter terms can be obtained from a reference unsteady simulation. In the presented case one unsteady simulation was sufficient to set up the model for a complete speed line. The model was implemented into the three-dimensional Navier-Stokes-code TRACE [5][12]. By using steady instead of unsteady CFD simulations, the time required for a speedline computation was reduced by a factor of 10. At the same time, the numerical results of the CT-model showed good alignment with the reference data. The model was evaluated for several different styles of compressors. In this paper various results are presented, including speedlines as well as radial inflow- and outflow-profiles. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855225 |
| DOI | 10.1115/GT2013-94408 |
| Volume Number | Volume 6A: Turbomachinery |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Navier-stokes equations Computer simulation Computational fluid dynamics Momentum Compressors Flow (dynamics) Pressure Rotation Stress Geometry Design Simulation Computation Reynolds-averaged navier–stokes equations Outflow Inflow Axial flow |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|