Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Calzada, Pedro De La Parra, Jorge Mínguez, Belén |
| Copyright Year | 2013 |
| Abstract | An annular exhaust system design for being used in the bench testing of MTR390-E turboshaft engine has been performed at ITP. The exhaust system is aimed at improving the aerodynamic performance at high power compared with an existing exhaust system used in the previous version of the engine. The exhaust cone emulates to some extend the exhaust system in the helicopter and it is comprised of outer and inner cones supported by three struts. The CFD commercial code FLUENT is used to investigate the aerodynamic performance of the baseline design and to optimise the inner and outer cone angles in the new design based on 2D axisymmetric models. Representative radial exit turbine conditions and far field conditions are imposed in the model comprising the exhaust cones plus a large external domain. Two outer and inner cone angles and two inner cone lengths are analysed at low and high power conditions. The aerodynamic performance of the exhaust shows high sensitivity to the inlet flow angle which varies up to 30°/40° between the high and low power conditions. In all the simulated cases a large separation region is generated after the inner cone. Due to the high swirling flow the separation bubble behind the plug growths downstream hence reducing the effective flow exit area compared with the geometry area and reducing the pressure recovery downstream once the flow has been separated from the inner cone. Although all cases show similar qualitative behaviour, the best case based on the computed figures of merit (i.e., lowest total pressure loss) is chosen for the new design. In order to further optimise the behaviour of the exhaust at high power, in the new design the three struts are aligned with the flow angle at high power conditions (struts were axially oriented in the baseline design) and the resulting geometry is analysed by 3D CFD simulations. As expected, the orientation of the struts has a dramatic impact in the aerodynamic behaviour of the exhaust. The new design shows an improvement of 29% in pressure recovery at high power compared with the baseline configuration, although it shows a degradation of 12% at low power. Both the baseline and the new exhaust systems are tested with the real engine in the test bench. The general aerodynamic performance of the new design is compared with the CFD simulation. As a consequence of the design change an important modification in the aerodynamic behaviour of the exhaust is obtained impacting the whole engine performance. Therefore a new performance model of the exhaust system is proposed to be implemented in the whole engine performance model in order to accurately simulate the behaviour of the engine coupled with the new exhaust. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855232 |
| DOI | 10.1115/GT2013-94022 |
| Volume Number | Volume 6B: Turbomachinery |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Computational fluid dynamics Swirling flow Separation (technology) Flow (dynamics) Pressure Engines Exhaust systems Design Geometry Bubbles Simulation Turbines Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|