Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Campa, Giovanni Camporeale, Sergio Mario Cosatto, Ezio Mori, Giulio |
| Copyright Year | 2012 |
| Abstract | Modern gas turbines equipped with lean premixed dry low emission combustion systems suffer the problem of thermoacoustic combustion instability. The acoustic characteristics of the combustion chamber and of the burners, as well as the response of the flame to the fluctuations of pressure and equivalence ratio, exert a fundamental influence on the conditions in which the instability may occur. A three dimensional finite element code has been developed in order to solve the Helmholtz equation with a source term that models the heat release fluctuations. The code is able to identify the frequencies at which thermoacoustic instabilities are expected and the growth rate of the pressure oscillations at the onset of instability. The code is able to treat complex geometries such as annular combustion chambers equipped with several burners. The adopted acoustic model is based upon the definition of the Flame Response Function (FRF) to acoustic pressure and velocity fluctuations in the burners. In this paper, data from CFD simulations are used to obtain a distribution of FRF of the κ-τ type as a function of the position within the chamber. The intensity coefficient, κ, is assumed to be proportional to the reaction rate of methane in a two-step mechanism. The time delay τ is estimated on the basis of the trajectories of the fuel particles from the injection point in the burner to the flame front. The paper shows the results obtained from the application of FRF with spatial distributions of both κ and τ. The present paper also shows the comparison between the application of the proposed model for the FRF and the traditional application of the FRF over a concentrated flame in a narrow area at the entrance to the combustion chamber. The distribution of the intensity coefficient and the time delay proves to have an influence, both on the eigenfrequency values and on the growth rates, in several of the examined modes. The proposed method is therefore able to establish a theoretical relation of the characteristics of the flame (depending on the burner geometry and operating conditions) to the onset of the thermoacoustic instability. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 179 |
| Ending Page | 188 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791844687 |
| DOI | 10.1115/GT2012-68243 |
| Volume Number | Volume 2: Combustion, Fuels and Emissions, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2012: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2012-06-11 |
| Publisher Place | Copenhagen, Denmark |
| Access Restriction | Subscribed |
| Subject Keyword | Methane Computational fluid dynamics Oscillations Combustion Acoustics Fuels Pressure Emissions Sound pressure Geometry Flames Heat Gas turbines Simulation Particulate matter Fluctuations (physics) Delays Combustion systems Engineering simulation Finite element analysis Combustion chambers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|