Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Brunetti, Iarno Riccio, Giovanni Rossi, Nicola Cappelletti, Alessandro Bonelli, Lucia Marini, Alessandro Paganini, Enrico Martelli, Francesco |
| Copyright Year | 2011 |
| Abstract | The use of hydrogen as derived fuel for low emission gas turbine is a crucial issue of clean coal technology power plant based on IGCC (Integrated Gasification Combined Cycle) technology. Control of NOx emissions in gas turbines supplied by natural gas is effectively achieved by lean premixed combustion technology; conversely, its application to NOx emission reduction in high hydrogen content fuels is not a reliable practice yet. Since the hydrogen premixed flame is featured by considerably higher flame speed than natural gas, very high air velocity values are required to prevent flash-back phenomena, with obvious negative repercussions on combustor pressure drop. In this context, the characterization of hydrogen lean premixed combustion via experimental and modeling analysis has a special interest for the development of hydrogen low NOx combustors. This paper describes the experimental and numerical investigations carried-out on a lean premixed burner prototype supplied by methane-hydrogen mixture with an hydrogen content up to 100%. The experimental activities were performed with the aim to collect practical data about the effect of the hydrogen content in the fuel on combustion parameters as: air velocity flash-back limit, heat release distribution, NOx emissions. This preliminary data set represents the starting point for a more ambitious project which foresees the upgrading of the hydrogen gas turbine combustor installed by ENEL in Fusina (Italy). The same data will be used also for building a computational fluid dynamic (CFD) model usable for assisting the design of the upgraded combustor. Starting from an existing heavy-duty gas turbine burner, a burner prototype was designed by means of CFD modeling and hot-wire measurements. The geometry of the new premixer was defined in order to control turbulent phenomena that could promote the flame moving-back into the duct, to increase the premixer outlet velocity and to produce a stable central recirculation zone in front of the burner. The burner prototype was then investigated during a test campaign performed at the ENEL’s TAO test facility in Livorno (Italy) which allows combustion test at atmospheric pressure with application of optical diagnostic techniques. In-flame temperature profiles, pollutant emissions and OH* chemiluminescence were measured over a wide range of the main operating parameters for three fuels with different hydrogen content (0, 75% and 100% by vol.). Flame control on burner prototype fired by pure hydrogen was achieved by managing both the premixing degree and the air discharge velocity, affecting the NOx emissions and combustor pressure losses respectively. A CFD model of the above-mentioned combustion test rig was developed with the aim to validate the model prediction capabilities and to help the experimental data analysis. Detailed simulations, performed by a CFD 3-D RANS commercial code, were focused on air/fuel mixing process, temperature field, flame position and NOx emission estimation. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 601 |
| Ending Page | 612 |
| Page Count | 12 |
| File Format | |
| ISBN | 9780791854624 |
| DOI | 10.1115/GT2011-45623 |
| Volume Number | Volume 2: Combustion, Fuels and Emissions, Parts A and B |
| Conference Proceedings | ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2011-06-06 |
| Publisher Place | Vancouver, British Columbia, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Methane Temperature Test facilities Atmospheric pressure Hydrogen Combustion Temperature profiles Fuels Wire Modeling Design Flames Integrated gasification combined cycle power stations Pollution Gas turbines Power stations Engineering simulation Modeling analysis Clean coal technology Turbulence Computational fluid dynamics Ducts Chemiluminescence Pressure Emissions Geometry Heat Simulation Pressure drop Reynolds-averaged navier–stokes equations Nitrogen oxides Combustion chambers Engineering prototypes Combustion technologies Natural gas |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|