Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Karleine, M. Justice Halliwell, Ian Jeffrey, S. Dalton |
| Copyright Year | 2010 |
| Abstract | In thermal management, system-level models provide an understanding of interactions between components and integration constraints — issues which are exacerbated by tighter coupling in both real life and simulation. A simple model of the steady-state thermal characteristics of the bearings in a two-spool turbofan engine has been described in previous work [1], where it was compared with a more comprehensive tribology-based simulation. Since failure is more likely to occur during transient rather than steady-state operating conditions, it is important that transient behavior is also studied. Therefore, development of models capable of capturing transient system-level performance in air vehicles is critical. In the current paper, the former simple model is used for the generation of a method to replicate the transient effects of heat loads within the lubrication system of a gas turbine engine. The simple engine model that defined the lubrication system is representative of a twin-spool, mid-size, high bypass ratio turbofan used in commercial transport. In order to demonstrate the range and versatility of the parametric heat load model, the model is now applied to the transient operation of a low-thrust unmanned aerial vehicle (UAV) engine, similar to that found on the Global Hawk. There are five separate bearings in the oil loop model and four separate oil sump locations. Contributions to the heat load calculations are heat transfer through the bearing housings and friction caused by station temperatures and shaft speeds, respectively. The lubrication system has been simplified by applying general assumptions for a proof-of-concept of the new transient parametric model. The fuel flow rate for the fuel-cooled oil cooler (FCOC) is set via the full authority digital electronic control (FADEC) in the transient engine model which is coupled to the parametric heat load model. Initially, it is assumed that total heat transfer from the bearings to the oil correspond to oil temperature changes of 150–250°F (83–139°C). The results show that successful modeling of the transient behavior on the thermal effects in the bearings of a gas turbine engine using the MATLAB/Simulink environment have been achieved. This is a valuable addition to the previous steady-state simulation, and the combined tools may be used as part of a more sophisticated thermal management system. Because it is so simple and scalable, the tool enables thermal management issues to be addressed in the preliminary design phase of a gas turbine engine development program. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 379 |
| Ending Page | 388 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791843963 |
| DOI | 10.1115/GT2010-23537 |
| e-ISBN | 9780791838723 |
| Volume Number | Volume 1: Aircraft Engine; Ceramics; Coal, Biomass and Alternative Fuels; Education; Electric Power; Manufacturing Materials and Metallurgy |
| Conference Proceedings | ASME Turbo Expo 2010: Power for Land, Sea, and Air |
| Language | English |
| Publisher Date | 2010-06-14 |
| Publisher Place | Glasgow, UK |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Bearings Model development Industrial lubrication systems Fuels Modeling Engines Vehicles Design Gas turbines Turbofans Temperature effects Unmanned aerial vehicles Failure Steady state Flow (dynamics) Stress Transients (dynamics) Heat Simulation Friction Thermal management Heat transfer Thrust Matlab Tribology |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|