Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ventzislav, G. Karaivanov Danny, W. Mazzotta Minking, K. Chyu William, S. Slaughter Alvin, Mary Anne |
| Copyright Year | 2008 |
| Abstract | Future oxy-fuel and hydrogen-fired turbines promise increased efficiency and low emissions. However, this comes at the expense of increased thermal load from higher inlet temperatures and a change in the working fluid in the gas path, leading to aero-thermal characteristics that are significantly different than those in traditional gas turbines. A computational methodology, based on three-dimensional finite element analysis (FEA) and damage mechanics is presented for predicting the evolution of creep in airfoils in these advanced turbine systems. Information revealed from three-dimensional computational fluid dynamics (CFD) simulations of external heat transfer and thermal loading over a generic airfoil provides detailed local distributions of pressure, surface temperature, and heat flux penetrating through the thermal barrier coated layer. There is an additional mechanical loading due to the centrifugal acceleration of the airfoil. Finite element analysis is then used to predict temperature and stress fields over the domain of the airfoil. The damage mechanics-based creep model uses a scalar damage parameter. This creep model is coupled with finite element analysis to predict the evolution of stress and creep damage over the entire airfoil. Visualization of the creep damage evolution over the airfoil shows the regions that are most susceptible to failure by creep. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 225 |
| Ending Page | 234 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791843154 |
| DOI | 10.1115/GT2008-51278 |
| e-ISBN | 0791838242 |
| Volume Number | Volume 5: Structures and Dynamics, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2008: Power for Land, Sea, and Air |
| Language | English |
| Publisher Date | 2008-06-09 |
| Publisher Place | Berlin, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Creep Damage mechanics Failure Airfoils Damage Three-dimensional modeling Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|