Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Forte, Annalisa Asti, Antonio Bei, Simone Betti, Massimo D’ercole, Michele Paci, Mariateresa Tonno, Giovanni Jesse, F. Stewart |
| Copyright Year | 2008 |
| Abstract | Due to the substantial increase in sources of gas, natural gas interchangeability is a key subject in the industry today. The extensive pipeline network means that natural gas arriving at appliances, boilers, burners and power plant turbines could come from anywhere. Fuel compositions vary from one source to another. Moreover, most recently, Liquefied Natural Gas has emerged as a major source and the composition of gas derived from LNG substantially differs from the natural gas one. In Dry Low NOx (DLN) systems, those changes in fuel composition can cause dangerous increase in combustion dynamics and can also affect the NOx emissions of the machine. Therefore, in order to meet the growing market demand for gas turbine combustors able to tolerate significant alterations in fuel composition, a system capable of burning gases with differing and variable over time Wobbe Indexes was developed. This innovative system does not involve any combustion hardware modifications. It allows the use of a premixed combustion system that complies with emissions, reliability, and safety, even when burning a fuel that is distinctly different from the original design gas. In particular, the system was developed in order to meet the requirements of a customer for burning any continuously and slowly varying mixture of two fuel gases, whose Wobbe Indexes difference is up to 25%. Since the burner is designed for 100% of the gas with lower Wobbe Index, the gas that has a higher WI needs to be heated, in order to achieve a target Modified Wobbe Index; the same happens for any mixture of the two gases. The system is based on a closed loop control on the Modified Wobbe Index of the fuel. Two turbine control gas chromatographs, located upstream the combustor inlet, measure the gas characteristics (LHV, specific gravity and temperature) and calculates the MWI. If it is different from the target one, it is corrected by modifying the temperature set point of a heat exchanger. The hardware is completed with one more plant gas chromatograph, located upstream the heat exchanger, for evaluating the fast and complete switch from one gas to the other one. In addition to the normal operation, that is with the 100% Lower Wobbe Index gas (L) or 100% Higher Wobbe Index gas (H) or any continuously and slowly varying mixture of these two gases, the system allows both the black and the normal start, the complete switch back and forth between 100% L gas and 100% H gas and load sheds and rejection. Moreover the two gases can be burned in diffusion combustion mode, as available, without requiring any increase in temperature, with no limitation from firing to full load. The capability of the system to adjust to all of the previously described events, potentially dangerous and damaging for the Gas Turbine combustion system, makes it suitable for applications that burn different lots of gases coming from different LNG sources, since it allows the turbine to accommodate the differences in Wobbe Index, due to various gas lots on a pipe line. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 877 |
| Ending Page | 885 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791843130 |
| DOI | 10.1115/GT2008-51189 |
| e-ISBN | 0791838242 |
| Volume Number | Volume 3: Combustion, Fuels and Emissions, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2008: Power for Land, Sea, and Air |
| Language | English |
| Publisher Date | 2008-06-09 |
| Publisher Place | Berlin, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Fuel management Temperature Pipelines Switches Combustion Fuels Density Machinery Design Gas turbines Gaseous fuels Power stations Hardware Combustion systems Safety Turbines Firing Boilers Liquefied natural gas Heat exchangers Diffusion (physics) Stress Emissions Gases Gas chromatography Dynamics (mechanics) Nitrogen oxides Combustion chambers Reliability Natural gas |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|