Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Felten, Fre´de´ric N. Kapetanovic, Semir Holmes, D. Graham Ostrowski, Michael |
| Copyright Year | 2008 |
| Abstract | Typical Computational Fluid Dynamics (CFD) studies performed on High Pressure Turbines (HPT) do not include the combustor domain in their analyses. Boundary conditions from the combustor exit have to be prescribed at the inlet of the computational domain for the first HPT nozzle. It is desirable to include the effect of combustor non-uniformities and flow gradients in order to enhance the accuracy of the aerodynamics and heat transfer predictions on the nozzle guide vanes and downstream turbine blades. The present work is the continuation of steady and quasi-unsteady studies performed previously by the authors. A fully unsteady nonlinear approach, also referred to as sliding mesh, is now used to investigate a first HPT stage and the impact of realistic non-uniformities and flow gradients found along the exit plane of a gas turbine combustor. Two Turbine Inlet Boundary Conditions (TIBC) are investigated. Simulations using a two-dimensional TIBC dependant on both the radial and circumferential directions are performed and compared to baseline analyses, where the previous two-dimensional TIBC is circumferentially averaged in order to generate inlet boundary conditions dependant only on the radial direction. The two elements included in the present work, combustor pitchwise non-uniformities and full unsteady blade row interactions are shown to: (1) alter the gas temperature profile predictions up to ±5%; (2) modify the surface temperature predictions by ±8% near the trailing edge of the vane suction side; (3) increase the overall pressure losses by roughly 1%, and (4) modified the ingestion behavior of the purge cavity flow. In addition, keeping in mind the tradeoff between improved predictions and computational cost, the use of an unsteady sliding mesh formulation, instead of a quasiunsteady frozen gust, reveals the importance of the two-way unsteady coupling between adjacent blade rows for temperature and pressure predictions. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 1725 |
| Ending Page | 1734 |
| Page Count | 10 |
| File Format | |
| ISBN | 9780791843147 |
| DOI | 10.1115/GT2008-50275 |
| e-ISBN | 0791838242 |
| Volume Number | Volume 4: Heat Transfer, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2008: Power for Land, Sea, and Air |
| Language | English |
| Publisher Date | 2008-06-09 |
| Publisher Place | Berlin, Germany |
| Access Restriction | Subscribed |
| Subject Keyword | Suction Temperature Turbine blades Computational fluid dynamics Blades Aerodynamics Temperature profiles Cavity flows Flow (dynamics) Pressure High pressure (physics) Gas turbines Simulation Tradeoffs Boundary-value problems Nozzle guide vanes Nozzles Engineering simulation Combustion chambers Turbines Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|