Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Stephen, A. Huyer Dropkin, Amanda |
| Abstract | Integrated electric motor/propulsor technological development offers the potential to increase usable volume for undersea vehicles by locating the electric motor in the duct. This has the added advantage that the electric motor has increased usable torque due to the increased radius. For many torpedo and unmanned undersea vehicle applications, however, the maximum vehicle diameter is limited by design. This places significant constraints on the vehicle and propulsor design in order to maximize hydrodynamic performance. The electric motor requires a significant duct thickness that both increases hydrodynamic drag due to the presence of the duct as well as limiting the maximum propeller radius. Both constraints result in diminished propulsor performance by both increasing overall drag and reducing the propulsive efficiency. In order to meet vehicle design objectives related to maximum vehicle speed and associated power requirements, a computational study was conducted to better understand the underlying fluid dynamics associated with various duct shapes and the resultant impact on both total vehicle drag and propulsor efficiency. As a baseline to this study, a post-swirl propulsor configuration was chosen (downstream stator blade row) with a 9 blade rotor and 11 blade stator. A generic torpedo hull shape was chosen and the maximum duct radius was required to lie within this radius. A cylindrical rim driven electric motor capable of generating a specific horsepower to achieve the design operational velocity required a set volume and established a design constraint limiting the shape of the duct. With this constraint, the duct shape was varied to produce varying constant flow acceleration from upstream of the rotor blade row to downstream of the stator blade row. The mean flow acceleration was derived from a constant mass flow relation. The axisymmetric Reynolds Averaged Navier-Stokes version of Fluent® was used to examine the fluid dynamics associated with a range of accelerated and decelerated duct flow cases as well as provide the base total vehicle drag. For each given duct shape, the Propeller Blade Design Code, PBD 14.3 was used to generate an optimized rotor and stator. To provide fair comparisons, the circulation distribution and maximum rotor radius were held constant to generate equivalent amounts of thrust. Propulsor efficiency could then be estimated based on these calculations. Calculations showed that minimum vehicle drag was produced with a duct that produced zero mean flow acceleration. Ducts generating accelerating and decelerating flow increased drag. However, propulsive efficiency based on blade thrust and torque was significantly increased for accelerating flow through the duct and reduced for decelerating flow cases. Full 3-D RANS flow simulations were then conducted for select test cases to quantify the specific blade, hull and duct forces and highlight the increased component drag produced by an operational propulsor, which reduced overall propulsive efficiency. Based on these results, an optimum rotor balancing vehicle drag and propulsive efficiency is proposed. |
| Sponsorship | Fluids Engineering Division |
| Starting Page | 797 |
| Ending Page | 807 |
| Page Count | 11 |
| File Format | |
| ISBN | 9780791849484 |
| DOI | 10.1115/FEDSM-ICNMM2010-31014 |
| e-ISBN | 9780791838808 |
| Volume Number | ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C |
| Conference Proceedings | ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2010-08-01 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Torque Propellers Blades Fluid dynamics Ducts Rotors Motors Drag (fluid dynamics) Flow (dynamics) Engines Optimization Vehicles Electric motors Hull Automotive design Design Flow simulation Reynolds-averaged navier–stokes equations Rotor balancing Horsepower Stators Shapes Thrust |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|