Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Gan, Subhadeep Poondru, Shirdish Ghia, Urmila Ghia, Karman |
| Copyright Year | 2007 |
| Abstract | One of the critical challenges in fluid flow research is to understand and predict separated flows. Separated flows are usually unsteady and turbulent. This work focuses on the calculations for the flow over a wall-mounted hump, an example of a turbulent separated flow. To validate the results of numerical simulation, the experimental data chosen was case 3 of the 2004 CFD Validation on Synthetic Jets and Turbulent Separation Control Workshop (http://cfdval2004.larc.nasa.gov/case3.html) conducted by NASA. This particular hump is the upper surface of a Glauert-Goldschmied type airfoil and has a chord length of C = 0.42 m, a maximum height of 0.0537 m, and a span of 0.5842 m. For this configuration, as the flow approaches the hump, the boundary layer experiences an adverse pressure gradient. Over the front convex portion of the hump, the flow experiences a favorable pressure gradient and accelerates, and then it separates over a relatively short concave section in the presence of a strong adverse pressure gradient. The hump has a simple geometry, but, nevertheless, is rich in many complex flow phenomena such as shear layer, separation, reattachment, and vortex interactions. Advances made in Computational Fluid Dynamics (CFD) have made available wide variety of turbulence models. A variety of turbulence model and simulation approaches are being used for this work. The flow is simulated using steady and unsteady-state three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations based turbulence models and three-dimensional time-dependent Detached Eddy Simulation (DES) and Large-Eddy Simulation (LES) methods. Case 3 of the CFD Validation workshop was done for both the baseline case as well as with flow control. In this work, the baseline case with Reynolds number of 371,600 based on the hump chord length, C, and Mach number, M, of 0.04 is simulated and analyzed. The experimental data reported by Greenblatt et. al. is used to validate the results for this work. K-ω, the Spalart-Allmaras and the SST turbulence models are implemented for the RANS simulation. Mean-velocity profiles and turbulent kinetic energy profiles, is reported and analyzed at several streamwise (x/C) locations, where C is the chord length of the hump. Detailed comparisons have been made of mean and turbulence statistics such as the pressure coefficient, skin-friction coefficient, and Reynolds stress profiles, with experimental results. The location of the reattachment behind the hump has been compared with experimental results. |
| Sponsorship | Fluids Engineering Division |
| Starting Page | 1405 |
| Ending Page | 1417 |
| Page Count | 13 |
| File Format | |
| ISBN | 0791842886 |
| DOI | 10.1115/FEDSM2007-37333 |
| e-ISBN | 0791838056 |
| Volume Number | Volume 1: Symposia, Parts A and B |
| Conference Proceedings | ASME/JSME 2007 5th Joint Fluids Engineering Conference |
| Language | English |
| Publisher Date | 2007-07-30 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Nasa Pressure gradient Separation (technology) Large eddy simulation Skin friction (fluid dynamics) Chords (trusses) Eddies (fluid dynamics) Flow control Kinetic energy Mach number Turbulence Computational fluid dynamics Computer simulation Fluid dynamics Workshops (work spaces) Reynolds number Airfoils Statistics as topic Flow (dynamics) Pressure Stress Geometry Simulation Reynolds-averaged navier–stokes equations Vortices Jets Shear (mechanics) Boundary layers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|