Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Efstathios, E. Michaelides |
| Copyright Year | 2003 |
| Abstract | Energy and momentum exchange between spherical particles and a fluid is a fundamental problem that has excited the intellectual curiosity of many scientists for more than two centuries. The development of the energy equation of spherical particles in a fluid can be traced back to the work of Laplace and Fourier that appeared early in the 19th century. It is now little known that Peclet formulated the no-slip condition at a solid boundary, by observing the transfer of heat, approximately ten years before the concept of viscosity was conceived. Towards the middle of the 19th century Poison derived the hydrodynamic force on a sphere in an inviscid fluid and a few years later, Stokes formulated what is now known “the Stokes drag” for the steady-state hydrodynamic force acting on a spherical particle in a viscous fluid. Boussinesq and Basset developed a form for the transient equation of motion of the particles with very low inertia towards the end of the 19th century. The mathematical advances of the early 20th century are reflected in developments in mechanics and on the equation of motion of particles. Oseen and Faxen used asymptotic methods to derive improved our knowledge on the behavior of particles with inertia and in close proximity to boundaries. Experimentation contributed very useful correlations on the hydrodynamic force and the heat transfer from particles. The experimentally derived data helped also in the development of semiempirical equations for the transient hydrodynamic force. Regular and singular perturbation methods have been used more recently to derive expressions for the transient hydrodynamic force and the heat transfer from particles during time-dependent processes, both under creeping flow conditions and at low Reynolds or Peclet numbers. The recent advances on computational methods and the exponential increase in computer power enable us to simulate the motion and energy exchange of groups of particles and complex particle interactions. This presentation gives a historical perspective on the development of our knowledge on particle motion and heat transfer inside a viscous or conducting fluid. Emphasis is given on the exposition of the lesser-known works of the 19th century that have placed the foundation for many concepts and methods that are still used today. The presentation concludes with the most recent contributions of the numerical studies and a short exposition of the voids in our knowledge on energy and momentum exchange processes between particles and a fluid. |
| Sponsorship | Fluids Engineering Division |
| Starting Page | 349 |
| Ending Page | 349 |
| Page Count | 1 |
| File Format | |
| ISBN | 0791836967 |
| DOI | 10.1115/FEDSM2003-45711 |
| e-ISBN | 0791836738 |
| Volume Number | Volume 1: Fora, Parts A, B, C, and D |
| Conference Proceedings | ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference |
| Language | English |
| Publisher Date | 2003-07-06 |
| Publisher Place | Honolulu, Hawaii, USA |
| Access Restriction | Open |
| Subject Keyword | Computers Viscosity Computational methods Inertia (mechanics) Creeping flow Momentum Fluid-dynamic forces Drag (fluid dynamics) Equations of motion Steady state Transients (dynamics) Fluids Heat Particulate matter Heat transfer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|