Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Houérou, Vincent Le Jacomine, Leandro Gauthier, Christian |
| Copyright Year | 2014 |
| Abstract | In most cases, scratching of the surface of a polymeric glass elicits brittle behavior and industrial solutions like coating have been successfully used to improve the scratch resistance. The origin of the success of the coating technique is still of great research interest since one of the limitations of this technique is the risk of cracking and chipping. In terms of interfacial adhesion characterization, a wide variety of methods have been used to assess this property of material systems. Nevertheless, the adhesion of coatings still remains to be successfully determined in a test which can reproduce the damage undergone by the coated surface during its real lifetime. In this context, scratch test constitutes a good candidate. The present study deals with the scratching technique as an interfacial adhesion measurement in coated systems. Using a single-asperity scratching device allowing in-situ observation of the scratch, the fracture of a thin nano-composite coating deposited on its substrate was investigated under different conditions of temperature and scratching speed. Four types of fracture kinetics were observed depending on these two variables. One of these exhibits a stable blister growth at the same speed as the movement of the indenter over hundreds micrometers. This slow and extensive growth of a blister was obtained at 80 °C at a scratching speed of 10 μm/s. When the blister has reached a certain size, it propagates with the indenter without increasing further in size: it constitutes the steady state blister growth. A variational form of the energy balance of a blistering process is proposed, which permits to assess the adhesion of the system. Actually, the energy spent in the delamination process can be determined by following the delaminated area during the blistering process with regard to the scratching distance. The main difficulty is to estimate the energy dissipated in plastic flow. Different tests were conducted with various indenters: spheres with different radius and roughness. Thanks to this multi-criterion approach, it was possible to fit a unique value of the adhesion in the case of experimental stable blistering growths. The results are discussed with regard to reliability and probe characteristics. |
| Sponsorship | International |
| File Format | |
| ISBN | 9780791845851 |
| DOI | 10.1115/ESDA2014-20121 |
| Volume Number | Volume 3: Engineering Systems; Heat Transfer and Thermal Engineering; Materials and Tribology; Mechatronics; Robotics |
| Conference Proceedings | ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis |
| Language | English |
| Publisher Date | 2014-07-25 |
| Publisher Place | Copenhagen, Denmark |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Deformation Glass Risk Surface roughness Coatings Brittleness Adhesion Steady state Energy budget (physics) Fracture (process) Nanocomposites Materials properties Damage Reliability Delamination Probes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|