Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Fiaschi, Daniele Secchi, Riccardo Galoppi, Giovanni Tempesti, Duccio Ferrara, Giovanni Ferrari, Lorenzo Karellas, Sotirios |
| Copyright Year | 2015 |
| Abstract | The design of expanders for organic fluids is gaining an increasing attention due to the large opportunities opened by the ORC as a way to recover low grade heat. The possibility of recovering at least a fraction of the energy related to throttling in inverse cycles could have interesting relapses on the market of heating (heat pumps) and refrigeration machines. The main challenge to be faced is the management of a highly wet fluid (typical quality is in the 0–0.6 range), which puts off side dynamic expanders like turbines. For this reason, piston technology is proposed and analyzed. The potential recovery from the throttling of a 20 kW target domestic heat pump cycle is determined by modeling the real expansion cycle with two different codes, a commercial one (largely widespread and very easy to use) and a purposely developed one, which is much more customizable and may include different approaches to the physical behavior of the two–phase expansion. The results show interesting possibility of energy recovery from this generally wasted source, which opens the way to improvements of the heat pump COP from 4% to about 7%, depending on the working (i.e. seasonal) conditions. The analysis also points out the agreement in the results of two different adopted simulation tools (commercial AMESim® and self-made customizable EES®), which can be thus considered valuable in the design, analysis and optimization of the proposed expander. Due to the biphasic nature of the working fluid, the performance of the expander is strongly influenced by the inlet conditions of the fluid from the condenser of the heat pump to the cylinders, such as throttling of the inlet/outlet valves and friction through the ducts. On the whole, this expander technology has very interesting chances to effectively manage fluids under highly wet conditions, like those related to the throttling from upper to lower pressure of inverse cycles. |
| Sponsorship | Advanced Energy Systems Division Solar Energy Division |
| File Format | |
| ISBN | 9780791856857 |
| DOI | 10.1115/ES2015-49427 |
| Volume Number | Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies |
| Conference Proceedings | ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum |
| Language | English |
| Publisher Date | 2015-06-28 |
| Publisher Place | San Diego, California, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Cycles Condensers (steam plant) Ducts Energy recovery Organic rankine cycle Valves Machinery Modeling Pressure Optimization Pistons Design Fluids Heat pumps Friction Simulation Heating Heat pump cycles Refrigeration Waste heat Refrigerants Turbines Cylinders |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|