Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Follen, Kenneth Stockar, Stephanie Canova, Marcello Guezennec, Yann Rizzoni, Giorgio |
| Copyright Year | 2011 |
| Abstract | The prediction of dynamic phenomena in compressible fluids, such as the air path systems of Internal Combustion Engines (ICEs) has seen an enormous growth in the past years. Striving to improve engine performance, fuel economy and emissions has led to the understanding that significant gains can only be achieved if improvements in engine design can be matched by the ability to closely control engine breathing and combustion performance. The current state of the art in the modeling of ICEs air path systems presents two main approaches, namely the high-fidelity, computationally intensive numerical methods and the low-fidelity, calibration intensive lumped-parameter models. This paper introduces a novel approach for modeling unsteady phenomena in compressible fluids that combines the advantages of numerical methods (high accuracy and low calibration effort) with the limited computation time of lumped-parameter models based on ordinary differential equations (ODEs). The approach is here presented for the one-dimensional nonlinear Euler equations for compressible fluid flow systems, which are particularly relevant for modeling the air path systems of internal combustion engines. |
| Sponsorship | Dynamic Systems and Control Division |
| Starting Page | 611 |
| Ending Page | 617 |
| Page Count | 7 |
| File Format | |
| ISBN | 9780791854761 |
| DOI | 10.1115/DSCC2011-5944 |
| Volume Number | ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, Volume 2 |
| Conference Proceedings | ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control |
| Language | English |
| Publisher Date | 2011-10-31 |
| Publisher Place | Arlington, Virginia, USA |
| Access Restriction | Subscribed |
| Subject Keyword | System dynamics Engine design Combustion Calibration Modeling Engines Transients (dynamics) Emissions Fluids Numerical analysis Fuel efficiency Computation Internal combustion engines Differential equations Corporate average fuel economy Compressible flow |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|