Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Zhang, X. F. Li, H. Y. Tzou, H. S. |
| Copyright Year | 2016 |
| Abstract | The electric polarization induced by the strain gradient is the direct flexoelectric effect; the mechanical stress/strain induced by the electric field gradient is the converse flexoelectric effect. Accordingly, flexoelectric sensors and actuators are respectively designed to monitor the structural dynamic behavior and to control the structural vibration. In this study, a line-electrode induced flexoelectric actuation is designed to control the plate vibrations. A flexoelectric layer laminated on the thin plate is used as a distributed actuator. The bottom surface of the flexoelectric actuator is a common electrode and the top surface is driven by a conductive line to generate an inhomogeneous electric field. Based on the converse flexoelectric effect, the electric filed gradient induces mechanical stresses in the flexoelectric layer resulting in induced bending moments to the plate structure. With the control moment imposed on the plate, flexoelectric vibration control of the plate is evaluated in this study. The objective of this study is to explore the modal control effects of the plate by the conductive line excitation. For a plate with two opposite sides simply supported and the other two are free (SS-F-SS-F), vibration control response of the plate is studied when the conductive line locates parallel to the y width direction. Then, independent modal control effects (i.e., the induced or controllable displacements by the flexoelectric actuator) are evaluated for the modes (1,1), (1,2), (1,3), (2,1) and (3,1) with different line actuation locations. Control effects of the conductive line location to various plate modes are explored and results show that the optimal conductive line location differs for different plate modes. When the FF width decreases to far less than the SS length, the SS-F-SS-F plate is degraded to a simply supported beam. Then, control effects for modes (1,1), (2,1) and (3,1) with different conductive line locations are discussed. The results are compared with the control effect derived directly by the simply supported beam theory. Thus, this study suggests that plate vibration can be controlled by the line-electrode induced converse flexoelectric effect. Conductive line locations are critical to control of various plate modes. |
| Sponsorship | Design Engineering Division Computers and Information in Engineering Division |
| File Format | |
| ISBN | 9780791850206 |
| DOI | 10.1115/DETC2016-59800 |
| Volume Number | Volume 8: 28th Conference on Mechanical Vibration and Noise |
| Conference Proceedings | ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference |
| Language | English |
| Publisher Date | 2016-08-21 |
| Publisher Place | Charlotte, North Carolina, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Actuators Structural dynamics Vibration Polarization (waves) Stress Polarization (electricity) Electrodes Simply supported beams Polarization (light) Strain gradient Plates (structures) Vibration control Excitation Sensors Electric fields |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|