Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Shan, Hua Aram, Shawn Lee, Yu-Tai |
| Abstract | An integrated numerical simulation tool that couples the Reynolds averaged Navier-Stokes (RANS) or the large eddy simulation (LES) solver for incompressible flows with the dielectric barrier discharge (DBD) electro-hydrodynamic (EHD) body force model has been developed. The EHD body force model is based on solving the electrostatic equations for the electric potential due to applied voltage and the net charge density due to ionized air. The boundary condition for the charge density on the dielectric surface is obtained from a Space-Time Lumped-Element (STLE) circuit model that accounts for the time and space dependence of air ionization on the input voltage amplitude, frequency, electrode geometry, and dielectric properties. The development of the numerical simulation tool is based on the framework of NavyFOAM using a multi-domain approach. The electric potential equation, the net charge density equation, and the flow equations are solved in separate computational domains. All equations are discretized in space using the cell-centered finite volume method. Parallel computation is implemented using domain-decomposition and message passing interface (MPI). Due to a large disparity in time scales between the electric discharge and the flow, a multiple sub-cycle technique is used in coupling the plasma solver and the flow solver. This paper focuses on its application to numerical simulation of flow separation and control over a high-lift flapped airfoil at a Reynolds number of 240,000. The 2-D unsteady RANS simulation utilized the Wilcox k-ω, the SST k-ω, and the k-kl-ω turbulence models. For the baseline case, in comparison with the measurement, the k-kl-ω model captures the feature of the unsteadiness of flow field associated with flow separation and shedding of vortices, better than the Wilcox k-ω and SST k-ω models. In the RANS simulations for flow separation control with DBD plasma actuation, the actuator is driven by voltage signals of a continuous or an amplitude-modulated sine waveform with a range of voltage amplitudes. The numerical results indicate that the modulated forcing is more effective than the continuous forcing for a certain range of applied voltages. The electrical power consumption calculated by the plasma model fits to a parabolic curve as a function of the root-mean-square of applied voltage. |
| Sponsorship | Fluids Engineering Division |
| File Format | |
| ISBN | 9780791857212 |
| DOI | 10.1115/AJKFluids2015-14213 |
| Volume Number | Volume 1: Symposia |
| Conference Proceedings | ASME/JSME/KSME 2015 Joint Fluids Engineering Conference |
| Language | English |
| Publisher Date | 2015-07-26 |
| Publisher Place | Seoul, South Korea |
| Access Restriction | Subscribed |
| Subject Keyword | Electric potential Actuators Cycles Flow separation Circuits Plasmas (ionized gases) Density Electric discharge Electricity (physics) Finite volume methods Electrodes Large eddy simulation Spacetime Signals Turbulence Computer simulation Reynolds number Airfoils Flow (dynamics) Geometry Simulation Reynolds-averaged navier–stokes equations Computation Ionization Vortices Boundary-value problems Electrohydrodynamics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|