Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Amini, Rouzbeh Voycheck, Carrie A. Debski, Richard E. |
| Copyright Year | 2014 |
| Abstract | Previously developed experimental methods to characterize micro-structural tissue changes under planar mechanical loading may not be applicable for clinically relevant cases. Such limitation stems from the fact that soft tissues, represented by two-dimensional surfaces, generally do not undergo planar deformations in vivo. To address the problem, a method was developed to directly predict changes in the collagen fiber distribution of nonplanar tissue surfaces following 3D deformation. Assuming that the collagen fiber distribution was known in the un-deformed configuration via experimental methods, changes in the fiber distribution were predicted using 3D deformation. As this method was solely based on kinematics and did not require solving the stress balance equations, the computational efforts were much reduced. In other words, with the assumption of affine deformation, the deformed collagen fiber distribution was calculated using only the deformation gradient tensor (obtained via an in-plane convective curvilinear coordinate system) and the associated un-deformed collagen fiber distribution. The new method was then applied to the glenohumeral capsule during simulated clinical exams. To quantify deformation, positional markers were attached to the capsule and their 3D coordinates were recorded in the reference position and three clinically relevant joint positions. Our results showed that at 60deg of external rotation, the glenoid side of the posterior axillary pouch had significant changes in fiber distribution in comparison to the other sub-regions. The larger degree of collagen fiber alignment on the glenoid side suggests that this region is more prone to injury. It also compares well with previous experimental and clinical studies indicating maximum principle strains to be greater on the glenoid compared to the humeral side. An advantage of the new method is that it can also be easily applied to map experimentally measured collagen fiber distribution (obtained via methods that require flattening of tissue) to their in vivo nonplanar configuration. Thus, the new method could be applied to many other nonplanar fibrous tissues such as the ocular shell, heart valves, and blood vessels. |
| Starting Page | 031003 |
| Ending Page | 031008 |
| Page Count | 6 |
| File Format | |
| ISSN | 01480731 |
| e-ISSN | 15288951 |
| Journal | Journal of Biomechanical Engineering |
| Volume Number | 136 |
| Issue Number | 3 |
| DOI | 10.1115/1.4026105 |
| Language | English |
| Publisher | The American Society of Mechanical Engineers |
| Publisher Date | 2014-02-13 |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Biological tissues Deformation Fibers |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physiology (medical) Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|