Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Doerr, Benjamin Ebel, Franziska Doerr, Carola |
| Abstract | The recently active research area of black-box complexity revealed that for many optimization problems the best possible black-box optimization algorithm is significantly faster than all known evolutionary approaches. While it is not to be expected that a general-purpose heuristic competes with a problem-tailored algorithm, it still makes sense to look for the reasons for this discrepancy. In this work, we exhibit one possible reason---most optimal black-box algorithms profit also from solutions that are inferior to the previous-best one, whereas evolutionary approaches guided by the "survival of the fittest" paradigm often ignore such solutions. Trying to overcome this shortcoming, we design a simple genetic algorithm that first creates λ offspring from a single parent by mutation with a mutation probability that is k times larger than the usual one. From the best of these offspring (which often is worse than the parent) and the parent itself, we generate further offspring via a uniform crossover operator that takes bits from the winner offspring with probability 1/k only. A rigorous runtime analysis proves that our new algorithm for suitable parameter choices on the OneMax test function class is asymptotically faster (in terms of the number of fitness evaluations) than what has been shown for μ +, λ EAs. This is the first time that crossover is shown to give an advantage for the OneMax class that is larger than a constant factor. Using a fitness-dependent choice of k and λ, the optimization time can be reduced further to linear in n. Our experimental analysis on several test function classes shows advantages already for small problem sizes and broad parameter ranges. Also, a simple self-adaptive choice of these parameters gives surprisingly good results. |
| Starting Page | 781 |
| Ending Page | 788 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450319638 |
| DOI | 10.1145/2463372.2463480 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-07-06 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Runtime analysis Genetic algorithm Theory Black-box complexity |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|