Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | László, E. Mudalige, G. R. Reguly, I. Z. Giles, M. B. |
| Abstract | Achieving optimal performance on the latest multi-core and many-core architectures depends more and more on making efficient use of the hardware's vector processing capabilities. While auto-vectorizing compilers do not require the use of vector processing constructs, they are only effective on a few classes of applications with regular memory access and computational patterns. Irregular application classes require the explicit use of parallel programming models; CUDA and OpenCL are well established for programming GPUs, but it is not obvious what model to use to exploit vector units on architectures such as CPUs or the Xeon Phi. Therefore it is of growing interest what programming models are available, such as Single Instruction Multiple Threads (SIMT) or Single Instruction Multiple Data (SIMD), and how they map to vector units. This paper presents results on achieving high performance through vectorization on CPUs and the Xeon Phi on a key class of applications: unstructured mesh computations. By exploring the SIMT and SIMD execution and parallel programming models, we show how abstract unstructured grid computations map to OpenCL or vector intrinsics through the use of code generation techniques, and how these in turn utilize the hardware. We benchmark a number of systems, including Intel Xeon CPUs and the Intel Xeon Phi, using an industrially representative CFD application and compare the results against previous work on CPUs and NVIDIA GPUs to provide a contrasting comparison of what could be achieved on current many-core systems. By carrying out a performance analysis study, we identify key performance bottlenecks due to computational, control and bandwidth limitations. We show that the OpenCL SIMT model does not map efficiently to CPU vector units due to auto-vectorization issues and threading overheads. We demonstrate that while the use of SIMD vector intrinsics imposes some restrictions, and requires more involved programming techniques, it does result in efficient code and near-optimal performance, that is up to 2 times faster than the non-vectorized code. We observe that the Xeon Phi does not provide good performance for this class of applications, but is still on par with a pair of high-end Xeon chips. CPUs and GPUs do saturate the available resources, giving performance very near to the optimum. |
| Starting Page | 39 |
| Ending Page | 50 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781450326575 |
| DOI | 10.1145/2560683.2560686 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-02-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Domain specific library Op2 Avx Xeon phi Unstructured grid Vectorization Cuda |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|