Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Chen, Chuanliang Li, Hang Xu, Gu Xu, Jingfang Abib, Elbio Renato Torres |
| Abstract | In information retrieval, relevance of documents with respect to queries is usually judged by humans, and used in evaluation and/or learning of ranking functions. Previous work has shown that certain level of noise in relevance judgments has little effect on evaluation, especially for comparison purposes. Recently learning to rank has become one of the major means to create ranking models in which the models are automatically learned from the data derived from a large number of relevance judgments. As far as we know, there was no previous work about quality of training data for learning to rank, and this paper tries to study the issue. Specifically, we address three problems. Firstly, we show that the quality of training data labeled by humans has critical impact on the performance of learning to rank algorithms. Secondly, we propose detecting relevance judgment errors using click-through data accumulated at a search engine. Two discriminative models, referred to as sequential dependency model and full dependency model, are proposed to make the detection. Both models consider the conditional dependency of relevance labels and thus are more powerful than the conditionally independent model previously proposed for other tasks. Finally, we verify that using training data in which the errors are detected and corrected by our method, we can improve the performance of learning to rank algorithms. |
| Starting Page | 171 |
| Ending Page | 180 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781605588896 |
| DOI | 10.1145/1718487.1718509 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-02-04 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Judgment error correction Relevance label prediction Training data quality |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|