Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zimmermann, Roger Yang, Yi Zhang, Luming |
| Abstract | Fine-grained image categories recognition is a challenging task aiming at distinguishing objects belonging to the same basic-level category, such as leaf or mushroom. It is a useful technique that can be applied for species recognition, face verification, and etc. Most of the existing methods have difficulties to automatically detect discriminative object components. In this paper, we propose a new fine-grained image categorization model that can be deemed as an improved version spatial pyramid matching (SPM). Instead of the conventional SPM that enumeratively conducts cell-to-cell matching between images, the proposed model combines multiple cells into cellets that are highly responsive to object fine-grained categories. In particular, we describe object components by cellets that connect spatially adjacent cells from the same pyramid level. Straightforwardly, image categorization can be casted as the matching between cellets extracted from pairwise images. Toward an effective matching process, a hierarchical sparse coding algorithm is derived that represents each cellet by a linear combination of the basis cellets. Further, a linear discriminant analysis (LDA)-like scheme is employed to select the cellets with high discrimination. On the basis of the feature vector built from the selected cellets, fine-grained image categorization is conducted by training a linear SVM. Experimental results on the Caltech-UCSD birds, the Leeds butterflies, and the COSMIC insects data sets demonstrate our model outperforms the state-of-the-art. Besides, the visualized cellets show discriminative object parts are localized accurately. |
| Starting Page | 57 |
| Ending Page | 64 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781450327824 |
| DOI | 10.1145/2578726.2578736 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-04-01 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Categories retrieval Fine-grained Spatial pyramid Sparse coding Cellets |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|