Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kögel, Stefan |
| Abstract | Models are key artifacts in model driven software engineering, similar to source code in traditional software engineering. Integrated development environments help users while writing source code, e.g. with typed auto completions, quick fixes, or automatic refactorings. Similar integrated features are rare for modeling IDEs. The above source code IDE features can be seen as a recommender system. A recommender system for model driven software engineering can combine data from different sources in order to infer a list of relevant and actionable model changes in real time. These recommendations can speed up working on models by automating repetitive tasks and preventing errors when the changes are atypical for the changed models. Recommendations can be based on common model transformations that are taken from the literature or learned from models in version control systems. Further information can be taken from instance- to meta-model relationships, modeling related artifacts (e.g. correctness constraints), and versions histories of models under version control. We created a prototype recommender that analyses the change history of a single model. We computed its accuracy via cross-validation and found that it was between 0.43 and 0.82 for models from an open source project. In order to have a bigger data set for the evaluation and the learning of model transformation, we also mined repositories from Eclipse projects for Ecore meta models and their versions. We found 4374 meta models with 17249 versions. 244 of these meta models were changed at least ten times and are candidates for learning common model transformations. We plan to evaluate our recommender system in two ways: (1) In off-line evaluations with data sets of models from the literature, created by us, or taken from industry partners. (2) In on-line user studies with participants from academia and industry, performed as case studies and controlled experiments. . |
| Starting Page | 1026 |
| Ending Page | 1029 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781450351058 |
| DOI | 10.1145/3106237.3119874 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-08-21 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Machine learning Heuristic search algorithms Data mining Model driven software engineering Recommender system |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|