Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Acar, Umut A. Blelloch, Guy E. Blumofe, Robert D. |
| Abstract | This paper studies the data locality of the work-stealing scheduling algorithm on hardware-controlled shared-memory machines. We present lower and upper bounds on the number of cache misses using work stealing, and introduce a locality-guided work-stealing algorithm along with experimental validation.As a lower bound, we show that there is a family of multi-threaded computations Gn each member of which requires &THgr;(n) total instructions (work) for which when using work-stealing the number of cache misses on one processor is constant, while even on two processors the total number of cache misses is &OHgr;(n). This implies that for general computations there is no useful bound relating multiprocessor to uninprocessor cache misses. For nested-parallel computations, however, we show that on P processors the expected additional number of cache misses beyond those on a single processor is bounded by O(C⌈m/s PT∞), where m is the execution time of an instruction incurring a cache miss, s is the steal time, C is the size of cache, and T∞ is the number of nodes on the longest chain of dependences. Based on this we give strong bounds on the total running time of nested-parallel computations using work stealing. For the second part of our results, we present a locality-guided work stealing algorithm that improves the data locality of multi-threaded computations by allowing a thread to have an affinity for a processor. Our initial experiments on iterative data-parallel applications show that the algorithm matches the performance of static-partitioning under traditional work loads but improves the performance up to 50% over static partitioning under multiprogrammed work loads. Furthermore, the locality-guided work stealing improves the performance of work-stealing up to 80%. |
| Starting Page | 1 |
| Ending Page | 12 |
| Page Count | 12 |
| File Format | |
| ISBN | 1581131852 |
| DOI | 10.1145/341800.341801 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2000-07-09 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|