Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Arévalo, Sergio Fernández, Antonio Larrea, Mikel |
| Abstract | Unreliable failure detectors were introduced by Chandra and Toueg [2] as a mechanism that provides (possibly incorrect) information about process failures. They showed how unreliable failure detectors can be used to solve the Consensus problem in asynchronous systems. They also showed in [1] that one of the classes of failure detectors they defined, namely Eventually Strong (⋄S), is the weakest class allowing to solve Consensus1.This brief announcement presents a new algorithm implementing ⋄S. Due to space limitation, the reader is referred to [4] for an in-depth presentation of the algorithm (system model, correctness proof, and performance analysis). Here, we present the general idea of the algorithm and compare it with other algorithms implementing unreliable failure detectors.The algorithm works as follows. We have n processes, p1, …, pn. Initially, process p1 starts sending messages periodically to the rest of processes. The rest of processes initially trust p1, and wait for its messages. If a process does not receive a message within some timeout period from its trusted process, then it suspects its trusted process and takes the next process as its new trusted process. If a process trusts itself, then it starts sending messages periodically to its successors. Otherwise, it just waits for periodical messages from its trusted process. If, at some point, a process receives a message from a process pi such that pi precedes its trusted process, then it will trust pi again, increasing the value of its timeout period with respect to pi.With this algorithm, eventually all the correct processes will permanently trust the same correct process. This provides the eventual weak accuracy property required by ⋄S. By simply suspecting the rest of processes, we obtain the strong completeness property required by ⋄S.Our algorithm compares favorably with the algorithms proposed in [2] and [3] in terms of the number and size of the messages periodically sent and the total amount of information periodically exchanged. Since algorithms implementing failure detectors need not necessarily be periodic, we propose a new and (we believe) more adequate performance measure, which we call eventual monitoring degree. Informally, this measure counts the number of pairs of correct processes that will infinitely often communicate. We show that the proposed algorithm is optimal with respect to this measure. Table 1 summarizes the comparison, where C denotes the number of correct processes and LFA denotes the proposed algorithm. |
| File Format | |
| ISBN | 1581131836 |
| DOI | 10.1145/343477.362113 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2000-07-16 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|