Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Ezra, Esther E. |
| Abstract | We present improved upper bounds for the size of relative (p,ε)-approximation for range spaces with the following property: For any (finite) range space projected onto (that is, restricted to) a ground set of size n and for any parameter 1 ≤ k ≤ n, the number of ranges of size at most k is only nearly-linear in n and polynomial in k. Such range spaces are called "well behaved". Our bound is an improvement over the bound $O(log(1/p)/ε^{2}$ p) introduced by Li et. al. [17] for the general case (where this bound has been shown to be tight in the worst case), when p l ε. We also show that such small size relative (p,ε)-approximations can be constructed in expected polynomial time. Our bound also has an interesting interpretation in the context of "p-nets": As observed by Har-Peled and Sharir [13], p-nets are special cases of relative (p,ε)-approximations. Specifically, when ε is a constant smaller than 1, the analysis in [13, 17] implies that there are p-nets of size O(log{(1/p)}/p) that are also relative approximations. In this context our construction significantly improves this bound for well-behaved range spaces. Despite the progress in the theory of p-nets and the existence of improved bounds corresponding to the cases that we study, these bounds do not necessarily guarantee a bounded relative error. Lastly, we present several geometric scenarios of well-behaved range spaces, and show the resulting bound for each of these cases obtained as a consequence of our analysis. In particular, when ε is a constant smaller than 1, our bound for points and axis-parallel boxes in two and three dimensions, as well as points and "fat" triangles in the plane, matches the optimal bound for p-nets introduced in [3, 25]. |
| Starting Page | 233 |
| Ending Page | 242 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450320313 |
| DOI | 10.1145/2462356.2462363 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-06-17 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Lovász local lemma Relative approximations Well-behaved range spaces |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|