Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Hellerstein, Joseph M. |
| Abstract | There is growing urgency in computer science circles regarding an impending crisis in parallel programming. Emerging computing platforms, from multicore processors to cloud computing, predicate their performance growth on the development of software to harness parallelism. For the first time in the history of computing, the progress of Moore's Law depends on the productivity of software engineers. Unfortunately, parallel and distributed programming today is challenging even for the best programmers, and simply unworkable for the majority. There has never been a more urgent need for breakthroughs in programming models and languages. While parallel programming in general is considered very difficult, data parallelism has been very successful. The relational algebra parallelizes easily over large datasets, and SQL programmers have long reaped the benefits of parallelism without modifications to their code. This point has been rediscovered and amplified via recent enthusiasm for MapReduce programming and "Big Data", which have turned data parallelism into common culture across computing. As a result, it is increasingly attractive to tackle the challenge of parallel programming on the firm common ground of data parallelism: start with an easy-to-parallelize kernel-relational algebra-and extend it to general-purpose computation. This approach has clear precedents in database theory, where it has long been known that classical relational languages have natural Turing-complete extensions. At the same time that this crisis has been evolving, variants of Datalog have been seen cropping up in a wide range of practical settings, from security to robotics to compiler analysis. Over the past seven years, we have been exploring the use of Datalog-inspired languages in a variety of systems projects, with a focus on inherently parallel tasks in networking and distributed systems. The experience has been largely positive: we have demonstrated full-featured Datalog-based system implementations that are orders of magnitude more compact than equivalent imperatively-implemented systems, with competitive performance and significantly accelerated software evolution. Evidence is mounting that Datalog can serve as the basis of a much simpler family of languages for programming serious parallel and distributed software. This raises many questions that should warm the heart of a database theoretician. How does the complexity hierarchy of logic languages relate to parallel models of computation? Is there a suitable Coordination Complexity model that captures the realities of modern parallel hardware, where computation is cheap and coordination is expensive? Can the lens of logic provide better focus on what is "hard" to parallelize, what is "embarrassingly parallel", and points in between? Does our understanding of non-monotonic reasoning shed light on the ability of loosely-coupled distributed systems to guarantee eventual consistency? And finally, a question close to the heart of the PODS conference: if Datalog has been The Answer all these years, is parallel and distributed programming The Question it has been waiting for? In this talk and the paper that accompanies it, I present design patterns that arose in our experience building distributed and parallel software in the style of Datalog, and use them to motivate some initial conjectures relating to the questions above. The full paper was not available at the time these proceedings were printed, but can be found online by searching for the phrase "Springtime for Datalog". |
| Starting Page | 1 |
| Ending Page | 2 |
| Page Count | 2 |
| File Format | PDF QT / MOV |
| ISBN | 9781450300339 |
| DOI | 10.1145/1807085.1807087 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2010-06-06 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Cloud computing Boom Datalog Distributed systems Bloom Parallelism Dedalus Overlog |
| Content Type | Video Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|