Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Choudhary, Alok Ramanujam, J. Banerjee, Prith Kandemir, Mahmut |
| Abstract | The performance of applications on large shared-memory multiprocessors with coherent caches depends on the interaction between the granularity of data sharing, the size of the coherence unit and the spatial locality exhibited by the applications, in addition to the amount of parallelism in the applications. Large coherence units are helpful in exploiting spatial locality, but worsen the effects of false sharing. We present a mathematical framework that allows a clean description of the relationship between spatial locality and false sharing. We first show how to identify a severe form of multiple-writer false sharing and then demonstrate the importance of the interaction between optimization techniques aimed at enhancing locality and the techniques oriented toward reducing false sharing. Given the conflicting requirements, a compiler based approach to this problem holds promise. We investigate the use of data transformations in addressing spatial locality and false sharing, and derives an approach that balances the impact of the two. Experimental results demonstrate that such a balanced approach outperforms those approaches that consider only one of these two issues. On an eight-processor SGI Origin 2000 system, our approach brings an additional 9% improvement over a powerful locality optimization technique that uses both loop and data transformations. Also, our approach obtains an additional 19% improvement over an optimization technique that is oriented specifically toward reducing false sharing. Our study also reveals that in addition to reducing synchronization costs and improving memory subsystem performance, obtaining large granularity parallelism also helps these two optimization techniques, namely, enhancing locality and reducing false sharing, be compatible. |
| ISBN | 0769504256 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 1999-10-12 |
| Access Restriction | Subscribed |
| Subject Keyword | Data reuse cache locality false sharing loop and memory layout transformations shared-memory multiprocessors |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|