Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Geng, Bo Xu, Chao Hua, Xian-Sheng Yang, Linjun |
| Abstract | Recently, various domain-specific search engines emerge, which are restricted to specific topicalities or document formats, and vertical to the broad-based search. Simply applying the ranking model trained for the broad-based search to the verticals cannot achieve a sound performance due to the domain differences, while building different ranking models for each domain is both laborious for labeling sufficient training samples and time-consuming or the training process. In this paper, to address the above difficulties, we investigate two problems: (1) whether we can adapt the ranking model learned for existing Web page search or verticals, to the new domain, so that the amount of labeled data and the training cost is reduced, while the performance requirement is still satisfied; and (2) how to adapt the ranking model from auxiliary domains to a new target domain. We address the second problem from the regularization framework and an algorithm called ranking adaptation SVM is proposed. Our algorithm is flexible enough, which needs only the prediction from the existing ranking model, rather than the internal representation of the model or the data from auxiliary domains. The first problem is addressed by the proposed ranking adaptability measurement, which quantitatively estimates if an existing ranking model can be adapted to the new domain. Extensive experiments are performed over Letor benchmark dataset and two large scale datasets crawled from different domains through a commercial internet search engine, where the ranking model learned for one domain will be adapted to the other. The results demonstrate the applicabilities of the proposed ranking model adaptation algorithm and the ranking adaptability measurement. |
| Starting Page | 197 |
| Ending Page | 206 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781605585123 |
| DOI | 10.1145/1645953.1645980 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-11-02 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Support vector machines Domain adaptation Information retrieval Learning to rank |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|