Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Tulone, Daniela Madden, Samuel |
| Abstract | We propose an energy-efficient framework, called SAF, for approximate querying and clustering of nodes in a sensor network. SAF uses simple time series forecasting models to predict sensor readings. The idea is to build these local models at each node, transmit them to the root of the network (the "sink"), and use them to approximately answer user queries. Our approach dramatically reduces communication relative to previous approaches for querying sensor networks by exploiting properties of these local models, since each sensor communicates with the sink only when its local model varies due to changes in the underlying data distribution. In our experimental results performed on a trace of real data, we observed on average about 150 message transmissions from each sensor over a week (including the learning phase) to correctly predict temperatures to within +/- 0.5°C.SAF also provides a mechanism to detect data similarities between nodes and organize nodes into clusters at the sink at no additional communication cost. This is again achieved by exploiting properties of our local time series models, and by means of a novel definition of data similarity between nodes that is based not on raw data but on the prediction values. Our clustering algorithm is both very efficient and provably optimal in the number of clusters. Our clusters have several interesting features: first, they can capture similarity between far away nodes that are not geographically adjacent; second, cluster membership to variations in sensors' local models; third, nodes within a cluster are not required to track the membership of other nodes in the cluster. We present a number of simulation-based experimental results that demonstrate these properties of SAF. |
| Starting Page | 191 |
| Ending Page | 300 |
| Page Count | 110 |
| File Format | |
| ISBN | 1595934774 |
| DOI | 10.1145/1164717.1164768 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2006-10-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Data stream Energy Query Data collection Sensor networks Models |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|