Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Sun, Aixin Hu, Longke Liu, Yong |
| Abstract | Rating prediction is to predict the preference rating of a user to an item that she has not rated before. Using the business review data from Yelp, in this paper, we study business rating prediction. A business here can be a restaurant, a shopping mall or other kind of businesses. Different from most other types of items that have been studied in various recommender systems (e.g., movie, song, book), a business physically exists at a geographical location, and most businesses have geographical neighbors within walking distance. When a user visits a business, there is a good chance that she walks by its neighbors. Through data analysis, we observe that there exists weak positive correlation between a business's ratings and its neighbors' ratings, regardless of the categories of businesses. Based on this observation, we assume that a user's rating to a business is determined by both the intrinsic characteristics of the business and the extrinsic characteristics of its geographical neighbors. Using the widely adopted latent factor model for rating prediction, in our proposed solution, we use two kinds of latent factors to model a business: one for its intrinsic characteristics and the other for its extrinsic characteristics. The latter encodes the neighborhood influence of this business to its geographical neighbors. In our experiments, we show that by incorporating geographical neighborhood influences, much lower prediction error is achieved than the state-of-the-art models including Biased MF, SVD++, and Social MF. The prediction error is further reduced by incorporating influences from business category and review content. |
| Starting Page | 345 |
| Ending Page | 354 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450322577 |
| DOI | 10.1145/2600428.2609593 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-07-03 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Rating prediction Yelp Matrix factorization Recommendation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|