Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Fields, Brian Rubin, Shai Bodík, Rastislav |
| Abstract | Although some instructions hurt performance more than others, current processors typically apply scheduling and speculation as if each instruction was equally costly. Instruction cost can be naturally expressed through the critical path: if we could predict it at run-time, egalitarian policies could be replaced with cost-sensitive strategies that will grow increasingly effective as processors become more parallel.This paper introduces a hardware predictor of instruction criticality and uses it to improve performance. The predictor is both effective and simple in its hardware implementation. The effectiveness at improving performance stems from using a dependence-graph model of the microarchitectural critical path that identifies execution bottlenecks by incorporating both data and machine-specific dependences. The simplicity stems from a token-passing algorithm that computes the critical path without actually building the dependence graph.By focusing processor policies on critical instructions, our predictor enables a large class of optimizations. It can (i) give priority to critical instructions for scarce resources (functional units, ports, predictor entries); and (ii) suppress speculation on non-critical instructions, thus reducing “useless” misspeculations. We present two case studies that illustrate the potential of the two types of optimization, we show that (i) critical-path-based dynamic instruction scheduling and steering in a clustered architecture improves performance by as much as 21% (10% on average); and (ii) focusing value prediction only on critical instructions improves performance by as much as 5%, due to removing nearly half of the misspeculations. |
| Starting Page | 74 |
| Ending Page | 85 |
| Page Count | 12 |
| File Format | |
| ISBN | 0769511627 |
| DOI | 10.1145/379240.379253 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2001-06-01 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|