Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Tal, Avishay |
| Abstract | A de Morgan formula over Boolean variables $x_{1},$ â ¦, $x_{n}$ is a binary tree whose internal nodes are marked with AND or OR gates and whose leaves are marked with variables or their negation. We define the size of the formula as the number of leaves in it. Proving that some explicit function (in P or NP) requires a large formula is a central open question in computational complexity. While we believe that some explicit functions require exponential formula size, currently the best lower bound for an explicit function is the $Ω(n^{3})$ lower bound for Andreevâ s function. A long line of work in quantum query complexity, culminating in the work of Reichardt [SODA, 2011], proved that for any formula of size s, there exists a polynomial of degree at most O(â s) that approximates the formula up to a small point-wise error. This is a classical theorem, arguing about polynomials and formulae, however the only known proof for it involves quantum algorithms. We apply Reichardt result to obtain the following: (1) We show how to trade average-case hardness in exchange for size. More precisely, we show that if a function f cannot be computed correctly on more than 1/2 + 2â k of the inputs by any formula of size at most s, then computing f exactly requires formula size at least Ω(k) · s. As an application, we improve the state of the art formula size lower bounds for explicit functions by a factor of Ω(logn). (2) We prove that the bipartite formula size of the Inner-Product function is $Ω(n^{2}).$ (A bipartite formula on Boolean variables $x_{1},$ â ¦, $x_{n}$ and $y_{1},$ â ¦, $y_{n}$ is a binary tree whose internal nodes are marked with AND or OR gates and whose leaves can compute any function of either the x or y variables.) We show that any bipartite formula for the Inner-Product modulo 2 function, namely IP(x,y) = â $_{i=1}^{n}$ $x_{i}$ $y_{i}$ (mod 2), must be of size $Ω(n^{2}),$ which is tight up to logarithmic factors. To the best of our knowledge, this is the first super-linear lower bound on the bipartite formula complexity of any explicit function. . |
| Starting Page | 1256 |
| Ending Page | 1268 |
| Page Count | 13 |
| File Format | |
| ISBN | 9781450345286 |
| DOI | 10.1145/3055399.3055472 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-06-19 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Formula lower bounds Average-case complexity Graph complexity Bipartite formula complexity Inner product Size amplification Formula complexity |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|