Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Zou, Wen Perkins, Roger Chen, James J. Zhao, Weizhong |
| Abstract | Probabilistic topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. It offers a viable approach to structure huge textual document collections into latent topic themes to aid text mining. Latent Dirichlet Allocation (LDA) is the most commonly used topic modelling method across a wide number of technical fields. However, model development can be arduous and tedious, and requires burdensome and systematic sensitivity studies in order to find the best set of model parameters. In this study, we use a heuristic approach to estimate the most appropriate number of topics. Specifically, the rate of perplexity change (RPC) as a function of numbers of topics is proposed as a suitable selector. We test the stability and effectiveness of the proposed method for three markedly different types of grounded-truth datasets: Salmonella next generation sequencing, pharmacological side effects, and textual abstracts on computational biology and bioinformatics (TCBB) from PubMed. Then we describe extensive sensitivity studies to determine best practices for generating effective topic models. To test effectiveness and validity of topic models, we constructed a ground truth data set from PubMed that contained some 40 health related themes including negative controls, and mixed it with a data set of unstructured documents. We found that obtaining the most useful model, tuned to desired sensitivity versus specificity, requires an iterative process wherein preprocessing steps, the type of topic modeling algorithm, and the algorithm's model parameters are systematically varied. Models need to be compared with both qualitative, subjective assessments and quantitative, objective assessments, and care is required that Gibbs sampling in model estimation is sufficient to assure stable solutions. With a high quality model, documents can be rank-ordered in accordance with probability of being associated with complex regulatory query string, greatly lessoning text mining work. Importantly, topic models are agnostic about how words and documents are defined, and thus our findings are extensible to topic models where samples are defined as documents, and genes, proteins or their sequences are words. |
| Starting Page | 588 |
| Ending Page | 588 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781450347228 |
| DOI | 10.1145/3107411.3108195 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-08-20 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Text mining Topic modeling Lda Parameter setting |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|