Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Levin, Roy Abassi, Hassan Cohen, Uzi |
| Abstract | Online social networks have become predominant in recent years and have grown to encompass massive scales of data. In addition to data scale, these networks can be heterogeneous and contain complex structures between different users, between social entities and various interactions between users and social entities. This is especially true in enterprise social networks where hierarchies explicitly exist between employees as well. In such networks, producing the best recommendations for each user is a very challenging problem for two main reasons. First, the complex structures in the social network need to be properly mined and exploited by the algorithm. Second, these networks contain millions or even billions of edges making the problem very difficult computationally. In this paper we present Guided Walk, a supervised graph based algorithm that learns the significance of different network links for each user and then produces entity recommendations based on this learning phase. We compare the algorithm with a set of baseline algorithms using offline evaluation techniques as well as a user survey. The offline results show that the algorithm outperforms the next best algorithm by a factor of 3.6. The user survey further confirms that the recommendation are not only relevant but also rank high in terms of personal relevance for each user. To deal with large scale social networks, the Guided Walk algorithm is formulated as a Pregel program which allows us to utilize the power of distributed parallel computing. This would allow horizontally scaling the algorithm for larger social networks by simply adding more compute nodes to the cluster. |
| Starting Page | 293 |
| Ending Page | 300 |
| Page Count | 8 |
| File Format | PDF MP4 |
| ISBN | 9781450340359 |
| DOI | 10.1145/2959100.2959143 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-09-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Recommendations Pregel Graphx Social networks Heterogeneous networks Graph algorithms Apache spark |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|