Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kruegel, Christopher Jacob, Gregoire Comparetti, Paolo Milani Neugschwandtner, Matthias |
| Abstract | To handle the large number of malware samples appearing in the wild each day, security analysts and vendors employ automated tools to detect, classify and analyze malicious code. Because malware is typically resistant to static analysis, automated dynamic analysis is widely used for this purpose. Executing malicious software in a controlled environment while observing its behavior can provide rich information on a malware's capabilities. However, running each malware sample even for a few minutes is expensive. For this reason, malware analysis efforts need to select a subset of samples for analysis. To date, this selection has been performed either randomly or using techniques focused on avoiding re-analysis of polymorphic malware variants [41, 23]. In this paper, we present a novel approach to sample selection that attempts to maximize the total value of the information obtained from analysis, according to an application-dependent scoring function. To this end, we leverage previous work on behavioral malware clustering [14] and introduce a machine-learning-based system that uses all statically-available information to predict into which behavioral class a sample will fall, before the sample is actually executed. We discuss scoring functions tailored at two practical applications of large-scale dynamic analysis: the compilation of network blacklists of command and control servers and the generation of remediation procedures for malware infections. We implement these techniques in a tool called ForeCast. Large-scale evaluation on over 600,000 malware samples shows that our prototype can increase the amount of potential command and control servers detected by up to 137% over a random selection strategy and 54% over a selection strategy based on sample diversity. |
| Starting Page | 11 |
| Ending Page | 20 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450306720 |
| DOI | 10.1145/2076732.2076735 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-12-05 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|