Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Cukic, Bojan Kocaguneli, Ekrem Lu, Huihua Menzies, Tim |
| Abstract | Background: Developing and maintaining a software effort estimation (SEE) data set within a company (within data) is costly. Often times parts of data may be missing or too difficult to collect, e.g. effort values. However, information about the past projects-although incomplete- may be helpful, when incorporated with the SEE data sets from other companies (cross data). Aim: Utilizing cross data to aid within company estimates and local experts; Proposing a synergy between semi-supervised, active and cross company learning for software effort estimation. Method: The proposed method: 1) Summarizes existing unlabeled within data; 2) Uses cross data to provide pseudo-labels for the summarized within data; 3) Uses steps 1 and 2 to provide an estimate for the within test data as an input for the local company experts. We use 21 data sets and compare the proposed method to existing state-of-the-art within and cross company effort estimation methods subject to evaluation by 7 different error measures. Results: In 132 out of 147 settings (21 data sets X 7 error measures = 147 settings), the proposed method performs as well as the state-of-the-art methods. Also, the proposed method summarizes the past within data down to at most 15% of the original data. Conclusion: It is important to look for synergies amongst cross company and within-company effort estimation data, even when the latter is imperfect or sparse. In this research, we provide the experts with a method that: 1) is competent (performs as well as prior within and cross data estimation methods) 2) reflects on local data (estimates come from the within data); 3) is succinct (summarizes within data down to 15% or less); 4) cheap (easy to build). |
| Starting Page | 1 |
| Ending Page | 10 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450320160 |
| DOI | 10.1145/2499393.2499400 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-10-09 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | K-nn Transfer learning Popularity Analogy-based estimation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|