Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Bui, Ngot Honavar, Vasant |
| Abstract | Social networks are naturally represented as heterogeneous networks with multiple types of objects e.g., actors, items and multiple types of links e.g., links between actors that denote social ties e.g., friendship, and links that connect actors to items e.g., photos, videos, articles, etc. that denote relationships between actors and items. In this paper, we consider the task of assigning labels to the unlabeled actors (individuals) in a large heterogeneous social network in which labels are available for a subset of actors. Specifically, we seek to learn a predictive model to label actors based on the attributes of the actors themselves and/or items that are linked to them in the network. Unfortunately, the number of distinct items, represented in real-world networks such as Facebook or Flickr is quite large (in the millions) although only a small subset of them are linked to specific actors. This leads to data sparsity which causes over-fitting and hence poor performance in predicting the labels of unlabeled actors. To address this problem, we induce hierarchical taxonomies over items and use the resulting taxonomies as a basis for selecting abstract and hence parsimonious representations of network data for learning the predictive models. Our experiments using three different predictors (Iterative classification Naïve Bayes, Iterative classification Logistic Regression, and EdgeCluster) on two real-world data sets, Last.fm and Flickr, show that the predictive models that take advantage of abstract representations of network data are competitive with, and in some cases, outperform those that do not. |
| Starting Page | 692 |
| Ending Page | 698 |
| Page Count | 7 |
| File Format | |
| ISBN | 9781450322409 |
| DOI | 10.1145/2492517.2492607 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-08-25 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|