Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Rong, Yu Cheng, Hong Zhu, Qiankun |
| Abstract | Information diffusion through various types of networks, such as social networks and media networks, is a very common phenomenon on the Internet nowadays. In many scenarios, we can track only the time when the information reaches a node. However, the source infecting this node is usually unobserved. Inferring the underlying diffusion network based on cascade data (observed sequence of infected nodes with timestamp) without additional information is an essential and challenging task in information diffusion. Many studies have focused on constructing complex models to infer the underlying diffusion network in a parametric way. However, the diffusion process in the real world is very complex and hard to be captured by a parametric model. Even worse, inferring the parameters of a complex model is impractical under a large data volume. Different from previous works focusing on building models, we propose to interpret the diffusion process from the cascade data directly in a non-parametric way, and design a novel and efficient algorithm named Non-Parametric Distributional Clustering (NPDC). Our algorithm infers the diffusion network according to the statistical difference of the infection time intervals between nodes connected with diffusion edges versus those with no diffusion edges. NPDC is a model-free approach since we do not define any transmission models between nodes in advance. We conduct experiments on synthetic data sets and two large real-world data sets with millions of cascades. Our algorithm achieves substantially higher accuracy of network inference and is orders of magnitude faster compared with the state-of-the-art solutions. |
| Starting Page | 1653 |
| Ending Page | 1662 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450340731 |
| DOI | 10.1145/2983323.2983718 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-10-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Network inference Clustering Information diffusion Non-parametric statistics |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|