Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Akbari, Hoda Berenbrink, Petra Sauerwald, Thomas |
| Abstract | We introduce a general method that converts a wide class of continuous neighborhood load balancing algorithms into a discrete version. Assume that initially the tasks are arbitrarily distributed among the nodes of a graph. In every round every node is allowed to communicate and exchange load with an arbitrary subset of its neighbors. The goal is to balance the load as evenly as possible. Continuous load balancing algorithms that are allowed to split tasks arbitrarily can balance the load perfectly, so that every node has exactly the same load. Discrete load balancing algorithms are not allowed to split tasks and therefore cannot balance the load perfectly. In this paper we consider the problem in a very general setting, where the tasks can have arbitrary weights and the nodes can have different speeds. Given a neighborhood load balancing algorithm that balances the load perfectly in t rounds, we convert the algorithm into a discrete version. This new algorithm is deterministic and balances the load in t rounds so that the difference between the average and the maximum load is at most $2d•w_{max},$ where d is the maximum degree of the network and $w_{max}$ is the maximum weight of any task. Compared to the previous methods that work for general graphs [12], our method achieves asymptotically lower discrepancies (e.g. O(1) vs. O(log n) for constant-degree expanders and O(r) vs. $O(n^{1/r})$ for r-dimensional tori) in the same number of rounds. For the case of uniform weights we present a randomized version of our algorithm balancing the load so that the difference between the minimum and the maximum load is at most O√dlog n) if the initial load on every node is large enough. |
| Starting Page | 271 |
| Ending Page | 280 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450314503 |
| DOI | 10.1145/2332432.2332486 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2012-07-16 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Randomized Load balancing Discrete diffusion |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|