Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Brazil, Marcus de Hoog, Julian Kalyanaraman, Shivkumar Muenzel, Valentin Vishwanath, Arun |
| Abstract | Affordability of battery energy storage critically depends on low capital cost and high lifespan. Estimating battery life-span, and optimising battery management to increase it, is difficult given the associated complex, multi-factor ageing process. In this paper we present a battery life prediction methodology tailored towards operational optimisation of battery management. The methodology is able to consider a multitude of dynamically changing cycling parameters. For lithium-ion (Li-ion) cells, the methodology has been tailored to consider five operational factors: charging and discharging currents, minimum and maximum cycling limits, and operating temperature. These are captured within four independent models, which are tuned using experimental battery data. Incorporation of dynamically changing factors is done using rainflow counting and discretisation. The resulting methodology is designed for solving optimal battery operation problems. Implementation of the methodology is presented for two case studies: a smartphone battery, and a household with battery storage alongside solar generation. For a smartphone that charges daily, our analysis finds that the battery life can be more than doubled if the maximum charging limit is chosen strategically. And for the battery supporting domestic solar, it is found that the impact of large daily cycling outweighs that of small more frequent cycles. This suggests that stationary Li-ion batteries may be well suited to provide ancillary services as a secondary function. The developed methodology and demonstrated use cases represent a key step towards maximising the cost-benefit of Li-ion batteries for any given application. |
| Starting Page | 57 |
| Ending Page | 66 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450336093 |
| DOI | 10.1145/2768510.2768532 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-07-14 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Lithium-ion (li-ion) batteries Battery value optimisation Cell degradation Cycle life prediction |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|