Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Choudhury, Romit Roy Gowda, Mahanth Dhekne, Ashutosh |
| Abstract | This paper explores a future in which drones serve as extensions to cellular networks. Equipped with a WiFi interface and a (LTE/5G) backhaul link, we envision a drone to fly in and create a WiFi network in a desired region. Analogous to fire engines, these drones can offer on-demand network service, alleviating unpredictable problems such as sudden traffic hotspots, poor coverage, and natural disasters. While realizing such a vision would need various pieces to come together, we focus on the problem of "drone placement". We ask: when several scattered users demand cellular connectivity in a particular area, where should the drone hover so that the aggregate demands are optimally satisfied? This is essentially a search problem, i.e., the drone needs to determine a 3D location from which its SNR to all the clients is maximized. Given the unknown environmental conditions (such as multipath, wireless shadows, foliage, and absorption), it is not trivial to predict the best hovering location. We explore the possibility of using RF ray tracing as a hint to narrow down the scope of search. Our key idea is to use 3D models from Google Earth to roughly model the terrain of the region, and then simulate how signals would scatter from the drone to various clients. While such simulations offer coarse-grained results, we find that they can still be valuable in broadly guiding the drone in the right direction. Once the drone has narrowed down the 3D search space, it can then physically move to quickly select the best hovering location. Measurement results from a WiFi mounted drone, communicating with 7 clients scattered in the UIUC campus, are encouraging. Our early prototype, DroneNet, reports 44% throughput gain with only 10% measurement overhead compared to a full scan of the entire region. |
| Starting Page | 7 |
| Ending Page | 12 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781450349079 |
| DOI | 10.1145/3032970.3032984 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-02-21 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Ray tracing Drones Infrastructure mobility |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|