Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Agrawal, Kunal Paykin, Jennifer Tyree, Stephen Weinberger, Kilian Q. |
| Abstract | Gradient Boosted Regression Trees (GBRT) are the current state-of-the-art learning paradigm for machine learned web-search ranking - a domain notorious for very large data sets. In this paper, we propose a novel method for parallelizing the training of GBRT. Our technique parallelizes the construction of the individual regression trees and operates using the master-worker paradigm as follows. The data are partitioned among the workers. At each iteration, the worker summarizes its data-partition using histograms. The master processor uses these to build one layer of a regression tree, and then sends this layer to the workers, allowing the workers to build histograms for the next layer. Our algorithm carefully orchestrates overlap between communication and computation to achieve good performance. Since this approach is based on data partitioning, and requires a small amount of communication, it generalizes to distributed and shared memory machines, as well as clouds. We present experimental results on both shared memory machines and clusters for two large scale web search ranking data sets. We demonstrate that the loss in accuracy induced due to the histogram approximation in the regression tree creation can be compensated for through slightly deeper trees. As a result, we see no significant loss in accuracy on the Yahoo data sets and a very small reduction in accuracy for the Microsoft LETOR data. In addition, on shared memory machines, we obtain almost perfect linear speed-up with up to about 48 cores on the large data sets. On distributed memory machines, we get a speedup of 25 with 32 processors. Due to data partitioning our approach can scale to even larger data sets, on which one can reasonably expect even higher speedups. |
| Starting Page | 387 |
| Ending Page | 396 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450306324 |
| DOI | 10.1145/1963405.1963461 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-03-28 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Parallel computing Ranking Machine learning Boosting Boosted regression trees Distributed computing Web search |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|