Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Jeris, Christopher Fang, DongPing Chen, John Chiu, Tom Wang, Yao |
| Abstract | Clustering is a widely used technique in data mining applications to discover patterns in the underlying data. Most traditional clustering algorithms are limited to handling datasets that contain either continuous or categorical attributes. However, datasets with mixed types of attributes are common in real life data mining problems. In this paper, we propose a distance measure that enables clustering data with both continuous and categorical attributes. This distance measure is derived from a probabilistic model that the distance between two clusters is equivalent to the decrease in log-likelihood function as a result of merging. Calculation of this measure is memory efficient as it depends only on the merging cluster pair and not on all the other clusters. Zhang et al [8] proposed a clustering method named BIRCH that is especially suitable for very large datasets. We develop a clustering algorithm using our distance measure based on the framework of BIRCH. Similar to BIRCH, our algorithm first performs a pre-clustering step by scanning the entire dataset and storing the dense regions of data records in terms of summary statistics. A hierarchical clustering algorithm is then applied to cluster the dense regions. Apart from the ability of handling mixed type of attributes, our algorithm differs from BIRCH in that we add a procedure that enables the algorithm to automatically determine the appropriate number of clusters and a new strategy of assigning cluster membership to noisy data. For data with mixed type of attributes, our experimental results confirm that the algorithm not only generates better quality clusters than the traditional k-means algorithms, but also exhibits good scalability properties and is able to identify the underlying number of clusters in the data correctly. The algorithm is implemented in the commercial data mining tool Clementine 6.0 which supports the PMML standard of data mining model deployment. |
| Starting Page | 263 |
| Ending Page | 268 |
| Page Count | 6 |
| File Format | |
| ISBN | 158113391X |
| DOI | 10.1145/502512.502549 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2001-08-26 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Log-likelihood Number of clusters Mixed type of attributes Clustering Noisy data |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|