Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Sato, Masahiro Sonoda, Takashi Izumo, Hidetaka |
| Abstract | Recommender systems provide personalized information based on a user's preferences. Differences in preferences among users are estimated from past records such as click logs or purchase logs. Recommender systems typically assume that users will respond to recommendations, provided that their favorite items are correctly selected. However, the responsiveness to recommendations depends on the type of users; while some users might be easily persuaded to take action, others might be more hesitant. In this paper, we propose a purchase prediction model that incorporates the differences in the responsiveness. We derived the individual users' responsiveness from a combination of purchase logs and recommendation logs. Improvement in the accuracy of purchase prediction was verified using a grocery shopping dataset. Another relatively unexplored yet important objective of recommender algorithms is to maximize recommendation impact, which is defined as the increase in purchase probability through recommendations. The impact of recommendations by our model exceeded that of a conventional model that ignores individual users' responsiveness. These results demonstrate the importance of modeling the responsiveness of individual users. In cases where recommendation logs are insufficient, the responsiveness needs to be estimated from other sources. Consequently, we investigated the correlation of the responsiveness with user attributes and item attributes. The estimates of the responsiveness from the correlated attributes outperformed the mean estimates. Furthermore, the recommendation impact of the model estimated from the correlated attributes was almost comparable to that of the model estimated from recommendation logs. These findings can help overcome the cold-start problem of inadequate recommendation logs. Our study presents a new direction in the field of personalization based on the responsiveness to recommendations. |
| Starting Page | 259 |
| Ending Page | 267 |
| Page Count | 9 |
| File Format | |
| ISBN | 9781450343688 |
| DOI | 10.1145/2930238.2930259 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-07-13 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Grocery shopping Cold-start problem Profit maximization Matrix factorization Personality Purchase prediction |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|