Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Minku, Leandro L. Yao, Xin |
| Abstract | Background: Software effort estimation (SEE) is a task of strategic importance in software management. Recently, some studies have attempted to use ensembles of learning machines for this task. Aims: We aim at (1) evaluating whether readily available ensemble methods generally improve SEE given by single learning machines and which of them would be more useful; getting insight on (2) how to improve SEE; and (3) how to choose machine learning (ML) models for SEE. Method: A principled and comprehensive statistical comparison of three ensemble methods and three single learners was carried out using thirteen data sets. Feature selection and ensemble diversity analyses were performed to gain insight on how to improve SEE based on the approaches singled out. In addition, a risk analysis was performed to investigate the robustness to outliers. Therefore, the better understanding/insight provided by the paper is based on principled experiments, not just an intuition or speculation. Results: None of the compared methods is consistently the best, even though regression trees and bagging using multilayer perceptrons (MLPs) are more frequently among the best. These two approaches usually perform similarly. Regression trees place more important features in higher levels of the trees, suggesting that feature weights are important when using ML models for SEE. The analysis of bagging with MLPs suggests that a self-tuning ensemble diversity method may help improving SEE. Conclusions: Ideally, principled experiments should be done in an individual basis to choose a model. If an organisation has no resources for that, regression trees seem to be a good choice for its simplicity. The analysis also suggests approaches to improve SEE. |
| Starting Page | 1 |
| Ending Page | 10 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450307093 |
| DOI | 10.1145/2020390.2020399 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-09-20 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Ensembles of learning machines Machine learning Software cost/effort estimation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|